| COURSE INFORMATON |         |              |                                          |                             |  |
|-------------------|---------|--------------|------------------------------------------|-----------------------------|--|
| Course<br>Code    | CE491   | Course Title | DESIGN OF REINFORCED CONCRETE STRUCTURES |                             |  |
| Semester          | Credits | ECTS         | C +P + L Hour                            | Prerequisites               |  |
| 7                 | 3       | 5            | 2+2+0                                    | CE 382: Reinforced Concrete |  |

| Language of Instruction |                                                                                                                                                                                                                                     | Course Level                                                                                                                     | Course Type |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| English                 |                                                                                                                                                                                                                                     | Bachelor's Degree (First Cycle Programmes)                                                                                       | Core        |  |
| Course<br>Coordinator   |                                                                                                                                                                                                                                     | t Prof. Almıla Uzel                                                                                                              |             |  |
| Instructors Assistan    |                                                                                                                                                                                                                                     | t Prof. Almıla Uzel                                                                                                              |             |  |
| Assistants              |                                                                                                                                                                                                                                     |                                                                                                                                  |             |  |
| Goals Analysis          |                                                                                                                                                                                                                                     | of this course is to apply the knowledge acquir<br>and Reinforced Concrete courses to the design<br>structures.                  |             |  |
| Content                 | Design stages of structures. Loads on structures. Design of continuous beams, one way slabs, two-way slabs, columns, footings, foundation walls, stairs and retaining walls. Lateral load analysis and simple lateral design rules. |                                                                                                                                  |             |  |
| the Course to industry  |                                                                                                                                                                                                                                     | e and reinforced concrete are widely used in every country. Hence, it is important the design of reinforced concrete structures. |             |  |

| Course Learning Outcomes                                                                                                                                                   | Detailed Program<br>Outcomes | Teaching<br>Methods | Assessment<br>Methods |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|-----------------------|
| Be capable of defining design stages of reinforced concrete structures.                                                                                                    | 1a,1b,2a,2b                  | 1,3                 | В                     |
| Be capable of designing continuous beams, one-way and two-way slabs, columns, footings, foundation walls, stairs and retaining walls according to applicable Design Codes. | 1b,2b,3b,9b                  | 1,2,3               | A,B                   |
| Be capable of calculating earthquake loads and response of simple structures under these earthquake loads.                                                                 | 1b,2b,3b,9b                  | 1,2,3               | A,B                   |

## YEDITEPE UNIVERSITY FACULTY OF ENGINEERING



## COURSE DESCRIPTION FORM

Be capable of applying design provisions as outlined in TS500, TS498 and Turkish Earthquake Design Codes in the design of a multi-story building.

1b,2b,3a,3b,6c,9b
1,2,3
A,B

| Teaching<br>Methods: | 1: Lecture by instructor, 2: Problem solving by instructor, 3: Project |  |
|----------------------|------------------------------------------------------------------------|--|
| Assessment Methods:  | A: Written exam, B: Project evaluation                                 |  |

|      | COURSE CONTENT                                                                                                                                                   |                                                |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|--|
| Week | Topics                                                                                                                                                           | Study Materials                                |  |  |  |  |
| 1    | Introduction –Objectives of Design-Serviceability-Ultimate Strength                                                                                              | Lecture Notes,<br>TS500,TS498                  |  |  |  |  |
| 2    | Design Codes and Specifications-Loads- Overview of design stages                                                                                                 | Lecture Notes,<br>TS500,TS498                  |  |  |  |  |
| 3    | Introduction to Slab System- Term Project (RC design of a multi-<br>story building)                                                                              | Lecture Notes,<br>TS500,TS498                  |  |  |  |  |
| 4    | Analysis of one-way slabs and continuous beams – One-way Slab<br>Design Example                                                                                  | Lecture Notes,<br>TS500,TS498                  |  |  |  |  |
| 5    | Reinforcement Detailing for slabs- Foundation Walls                                                                                                              | Lecture Notes,<br>TS500,TS498                  |  |  |  |  |
| 6    | Introduction to Two way Slab Systems- Two-way slab with stiff beams example                                                                                      | Lecture Notes,<br>TS500,TS498                  |  |  |  |  |
| 7    | Two-way slab example continued                                                                                                                                   | Lecture Notes,<br>TS500,TS498                  |  |  |  |  |
| 8    | Study on Term Project-progress report-Midterm Exam                                                                                                               | Lecture Notes,<br>TS500,TS498                  |  |  |  |  |
| 9    | Load transfer to beams and columns- preliminary dimensioning of<br>beams and columns- Approximate analysis of frame systems<br>considering unfavourable loadings | Lecture Notes,<br>TS500,TS498,<br>EQ Code 2018 |  |  |  |  |
| 10   | RC Slabs with Joists- design specifications and example                                                                                                          | Lecture Notes,<br>TS500,TS498,<br>EQ Code 2018 |  |  |  |  |
| 11   | Seismic design and Earthquake Loads- Brief introduction to earthquake resistant deisgn of RC structures                                                          | Lecture Notes,<br>TS500,TS498,<br>EQ Code 2018 |  |  |  |  |
| 12   | Earthquake Loads and Muto Method for lateral analysis of simple multi-story frames                                                                               | Lecture Notes,<br>TS500,TS498,<br>EQ Code 2018 |  |  |  |  |
| 13   | Design of beams and columns as per EQ code-reinforcement detailing rules for earthquake resistant structures- Footings                                           | Lecture Notes,<br>TS500,TS498,<br>EQ Code 2018 |  |  |  |  |
| 14   | Footings continued - Retaining Walls-Stairs                                                                                                                      | Lecture Notes,<br>TS500,TS498,<br>EQ Code 2018 |  |  |  |  |

| RECOMMENDED SOURCES  |                                                                                                                                                                                  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Textbook             | Reinforced Concrete – Mechanics and Design (Canadian Edition) Authors: MacGregor, J.G. and Bartlett, F.M., Prentice Hall, 2000 ISBN-13: 978-0-13-101403-9 ISBN-10: 0-13-101403-X |  |  |
| Additional Resources | A booklet of lecture notes and solved design examples prepared by the instructor.                                                                                                |  |  |

| MATERIAL SHARING                                                                          |                                       |
|-------------------------------------------------------------------------------------------|---------------------------------------|
| <b>Documents</b> Lecture notes and solved examples are handed out at the beginn semester. |                                       |
| Exams                                                                                     | Solution of exam questions are posted |

| ASSESSMENT                                         |        |            |  |  |
|----------------------------------------------------|--------|------------|--|--|
| IN-TERM STUDIES                                    | NUMBER | PERCENTAGE |  |  |
| Midterm                                            | 1      | 42         |  |  |
| Term Project                                       | 1      | 58         |  |  |
| Total                                              |        | 100        |  |  |
| CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE |        | 40         |  |  |
| CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE   |        | 60         |  |  |
| Total                                              |        | 100        |  |  |

| COURSE CATEGORY | Field Course |
|-----------------|--------------|
|-----------------|--------------|

|    | COURSE'S CONTRIBUTION TO PROGRAM OUTCOMES                                                                  |            |  |  |  |
|----|------------------------------------------------------------------------------------------------------------|------------|--|--|--|
| No | Program Learning Outcomes                                                                                  | check<br>√ |  |  |  |
| 1a | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline, | √          |  |  |  |
| 1b | Ability to use theoretical and applied knowledge in these areas in complex engineering problems.           | √          |  |  |  |
| 2a | Ability to identify, formulate, and solve complex engineering problems,                                    | √          |  |  |  |
| 2b | Ability to select and apply proper analysis and modeling methods for this purpose.                         | √          |  |  |  |

## COURSE DESCRIPTION FORM

| 3a          | Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result,              | √            |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 3b          | Ability to apply modern design methods for this purpose.                                                                                                             | $\checkmark$ |
| 4a          | Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice.                         |              |
| 4b          | Ability to employ information technologies effectively.                                                                                                              |              |
| 5a          | Ability to design experiments for investigating complex engineering problems or discipline specific research questions,                                              |              |
| 5b          | Ability to conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions. |              |
| 6a          | Ability to work efficiently in intra-disciplinary teams,                                                                                                             |              |
| 6b          | Ability to work efficiently in multi-disciplinary teams,                                                                                                             |              |
| 6с          | Ability to work individually.                                                                                                                                        | $\checkmark$ |
| 7a          | Ability to communicate effectively in Turkish, both orally and in writing,                                                                                           |              |
| 7b          | Knowledge of a minimum of one foreign language,                                                                                                                      |              |
| 7c          | Ability to write effective reports and comprehend written reports, prepare design and production reports,                                                            |              |
| 7d          | Ability to make effective presentations,                                                                                                                             |              |
| 7e          | Ability to give and receive clear and intelligible instructions.                                                                                                     |              |
| 8a          | Recognition of the need for lifelong learning, ability to access information, ability to follow developments in science and technology,                              |              |
| 8b          | Ability to continue to educate him/herself.                                                                                                                          |              |
| 9a          | Consciousness to behave according to ethical principles and professional and ethical responsibility.                                                                 |              |
| 9b          | Knowledge on standards used in engineering practice.                                                                                                                 | $\checkmark$ |
| 10a         | Knowledge about business life practices such as project management, risk management, change management.                                                              |              |
| 10b         | Awareness in entrepreneurship and innovation.                                                                                                                        |              |
| <b>10</b> c | Knowledge about sustainable development.                                                                                                                             |              |
| 11a         | Knowledge about the global and social effects of engineering practices on health, environment, and safety,                                                           |              |
| 11b         | Knowledge about contemporary issues of the century reflected into the field of engineering.                                                                          |              |
| 11c         | Awareness of the legal consequences of engineering solutions.                                                                                                        |              |
| 12          | Knowledge about project award mechanisms and tendering procedures.                                                                                                   |              |
| 13          | Knowledge about the interaction of designers and constructors.                                                                                                       |              |



| ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION |          |                    |                             |  |
|--------------------------------------------------------------------|----------|--------------------|-----------------------------|--|
| Activities                                                         | Quantity | Duration<br>(Hour) | Total<br>Workload<br>(Hour) |  |
| Course Duration                                                    | 13,5     | 4                  | 54                          |  |
| Midterm                                                            | 1        | 2                  | 4                           |  |
| Project                                                            | 1        | 60                 | 60                          |  |
| Final examination                                                  | 1        | 2                  | 7                           |  |
| Total Work Load                                                    |          |                    | 125                         |  |
| Total Work Load / 25 (h)                                           |          |                    | 5                           |  |
| ECTS Credit of the Course                                          |          |                    | 5                           |  |

| Prepared by: Asst. Prof. Almila UZEL | Preparation date: 14.12.2022 |
|--------------------------------------|------------------------------|
|                                      |                              |